![important](/study/2022-2023/files/study.2022-2023/exclamation-point-small.png)
Note: This is the 2023–2024 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .
Note: This is the 2023–2024 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .
Students who wish to study at the Honours level in two Arts disciplines may apply to combine Joint Honours program components from two Arts disciplines. For a list of available Joint Honours programs, see "Overview of Programs Offered" and "Joint Honours Programs".
To remain in the Joint Honours program and receive the Joint Honours degree, a student must maintain the standards set by each discipline, as well as by the Faculty. In the Mathematics courses of the program a GPA of 3.00 and a CGPA of 3.00 must be maintained. Students who have difficulty in maintaining the required level should change to another program before entering their final year.
Students who have not completed the program prerequisite courses listed below or their equivalents will be required to make up any deficiencies in these courses over and above the 36 credits required for the program.
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases. Linear transformations. Eigenvalues and diagonalization.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Trudeau, Sidney; Collins-Woodfin, Elizabeth; Branchereau, Romain (Fall) Gerbelli-Gauthier, Mathilde (Winter) Bellemare, Hugues (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction A: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction B: Not open to students who have taken or are taking MATH 123, except by permission of the Department of Mathematics and Statistics.
Restriction C: Not open to students who are taking or have taken MATH 134.
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Fortier, Jérôme; Cant, Dylan; Fu, Hao (Fall) Fortier, Jérôme (Winter) Sajjad, Alia (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Sroka, Marcin; Cairns, Hannah (Fall) Trudeau, Sidney; Macdonald, Jeremy; Mazakian, Hovsep (Winter) Mazakian, Hovsep; Abi Younes, Elio (Summer)
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Sabok, Marcin; Allen, Patrick (Fall) Trudeau, Sidney (Winter) Bibby, Sean (Summer)
Mathematics & Statistics (Sci) : Sets, functions and relations. Methods of proof. Complex numbers. Divisibility theory for integers and modular arithmetic. Divisibility theory for polynomials. Rings, ideals and quotient rings. Fields and construction of fields from polynomial rings. Groups, subgroups and cosets; group actions on sets.
Terms: Fall 2023
Instructors: Macdonald, Jeremy; Goren, Eyal Z (Fall)
Fall
3 hours lecture; 1 hour tutorial
Prerequisite: MATH 133 or equivalent
Mathematics & Statistics (Sci) : Linear equations over a field. Introduction to vector spaces. Linear maps and their matrix representation. Determinants. Canonical forms. Duality. Bilinear and quadratic forms. Real and complex inner product spaces. Diagonalization of self-adjoint operators.
Terms: Winter 2024
Instructors: Tserunyan, Anush (Winter)
Mathematics & Statistics (Sci) : Basic point-set topology, metric spaces: open and closed sets, normed and Banach spaces, Hölder and Minkowski inequalities, sequential compactness, Heine-Borel, Banach Fixed Point theorem. Riemann-(Stieltjes) integral, Fundamental Theorem of Calculus, Taylor's theorem. Uniform convergence. Infinite series, convergence tests, power series. Elementary functions.
Terms: Winter 2024
Instructors: Jakobson, Dmitry (Winter)
3 credits selected from:
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2023
Instructors: Hundemer, Axel (Fall)
Mathematics & Statistics (Sci) : Properties of R. Cauchy and monotone sequences, Bolzano- Weierstrass theorem. Limits, limsup, liminf of functions. Pointwise, uniform continuity: Intermediate Value theorem. Inverse and monotone functions. Differentiation: Mean Value theorem, L'Hospital's rule, Taylor's Theorem.
Terms: Fall 2023
Instructors: Jaksic, Vojkan (Fall)
* It is strongly recommended that students take MATH 254.
3 credits selected from:
Mathematics & Statistics (Sci) : Partial derivatives and differentiation of functions in several variables; Jacobians; maxima and minima; implicit functions. Scalar and vector fields; orthogonal curvilinear coordinates. Multiple integrals; arc length, volume and surface area. Line and surface integrals; irrotational and solenoidal fields; Green's theorem; the divergence theorem. Stokes' theorem; and applications.
Terms: Fall 2023
Instructors: Kamran, Niky (Fall)
Mathematics & Statistics (Sci) : Point-set topology in Euclidean space; continuity and differentiability of functions in several variables. Implicit and inverse function theorems. Vector fields, divergent and curl operations. Rigorous treatment of multiple integrals: volume and surface area; and Fubini’s theorem. Line and surface integrals, conservative vector fields. Green's theorem, Stokes’ theorem and the divergence theorem.
Terms: Winter 2024
Instructors: Toth, John A (Winter)
** It is strongly recommended that students take MATH 358.
15 credits selected from the list below. The remaining credits are to be chosen from the full list of available Honours courses in Mathematics and Statistics.
* Not open to students who have taken MATH 354.
** Not open to students who have taken MATH 355.
*** Not open to students who have taken MATH 370.
+ Not open to students who have taken MATH 371.
++ Not open to students who have taken MATH 380.
Mathematics & Statistics (Sci) : First and second order equations, linear equations, series solutions, Frobenius method, introduction to numerical methods and to linear systems, Laplace transforms, applications.
Terms: Winter 2024
Instructors: Humphries, Tony (Winter)
Mathematics & Statistics (Sci) : Sample space, probability axioms, combinatorial probability. Conditional probability, Bayes' Theorem. Distribution theory with special reference to the Binomial, Poisson, and Normal distributions. Expectations, moments, moment generating functions, uni-variate transformations. Random vectors, independence, correlation, multivariate transformations. Conditional distributions, conditional expectation.Modes of stochastic convergence, laws of large numbers, Central Limit Theorem.
Terms: Fall 2023
Instructors: Addario-Berry, Louigi (Fall)
Mathematics & Statistics (Sci) : Data analysis. Estimation and hypothesis testing. Power of tests. Likelihood ratio criterion. The chi-squared goodness of fit test. Introduction to regression analysis and analysis of variance.
Terms: Winter 2024
Instructors: Asgharian, Masoud (Winter)
Mathematics & Statistics (Sci) : Review of point-set topology: topological space, dense sets, completeness, compactness, connectedness and path-connectedness, separability. Arzela-Ascoli, Stone-Weierstrass, Baire category theorems. Measure theory: sigma algebras, Lebesgue measure and integration, L^1 functions. Fatou's lemma, monotone and dominated convergence theorem. Egorov, Lusin's theorems. Fubini-Tonelli theorem.
Terms: Fall 2023
Instructors: Vetois, Jerome (Fall)
Mathematics & Statistics (Sci) : Continuation of measure theory. Functional analysis: L^p spaces, linear functionals and dual spaces, Hahn-Banach theorem, Riesz representation theorem. Hilbert spaces, weak convergence. Spectral theory of compact operator. Introduction to Fourier analysis, Fourier transforms.
Terms: Winter 2024
Instructors: Jakobson, Dmitry (Winter)
Mathematics & Statistics (Sci) : Introduction to monoids, groups, permutation groups; the isomorphism theorems for groups; the theorems of Cayley, Lagrange and Sylow; structure of groups of low order. Introduction to ring theory; integral domains, fields, quotient field of an integral domain; polynomial rings; unique factorization domains.
Terms: Fall 2023
Instructors: Darmon, Henri (Fall)
Mathematics & Statistics (Sci) : Introduction to modules and algebras; finitely generated modules over a principal ideal domain. Field extensions; finite fields; Galois groups; the fundamental theorem of Galois theory; application to the classical problem of solvability by radicals.
Terms: Winter 2024
Instructors: Darmon, Henri (Winter)
Mathematics & Statistics (Sci) : In addition to the topics of MATH 320, topics in the global theory of plane and space curves, and in the global theory of surfaces are presented. These include: total curvature and the Fary-Milnor theorem on knotted curves, abstract surfaces as 2-d manifolds, the Euler characteristic, the Gauss-Bonnet theorem for surfaces.
Terms: Winter 2024
Instructors: Kamran, Niky (Winter)
Mathematics & Statistics (Sci) : Functions of a complex variable, Cauchy-Riemann equations, Cauchy's theorem and its consequences. Uniform convergence on compacta. Taylor and Laurent series, open mapping theorem, Rouché's theorem and the argument principle. Calculus of residues. Fractional linear transformations and conformal mappings.
Terms: Fall 2023
Instructors: Hurtubise, Jacques Claude (Fall)