![important](/study/2021-2022/files/study.2021-2022/exclamation-point-small.png)
Note: This is the 2018–2019 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .
Note: This is the 2018–2019 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .
This Major provides a solid basis for postgraduate study in meteorology, atmospheric physics, or related fields, as well as the necessary preparation for embarking on a professional career as a meteorologist directly after the B.Sc.
The program is jointly administered by the Department of Physics and the Department of Atmospheric and Oceanic Sciences. Students should consult undergraduate advisers in both departments.
Atmospheric & Oceanic Sciences : An introduction to physical meteorology designed for students in the physical sciences. Topics include: composition of the atmosphere; heat transfer; the upper atmosphere; atmospheric optics; formation of clouds and precipitation; instability; adiabatic charts.
Terms: Fall 2018
Instructors: Zuend, Andreas (Fall)
Atmospheric & Oceanic Sciences : Laws of motion, geostrophic wind, gradient wind. General circulation of the atmosphere and oceans, local circulation features. Air-sea interaction, including hurricanes and sea-ice formation, extra-tropical weather systems and fronts, role of the atmosphere and oceans in climate.
Terms: Winter 2019
Instructors: Straub, David N (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 214
Atmospheric & Oceanic Sciences : Basic notions of radiative transfer and applications of satellite and radar data to mesoscale and synoptic-scale systems are discussed. Emphasis will be put on the contribution of remote sensing to atmospheric and oceanic sciences.
Terms: Winter 2019
Instructors: Fabry, Frederic (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 215
Atmospheric & Oceanic Sciences : Lagrangian and Eulerian time derivatives. Vorticity, divergence and Helmholtz decomposition. Two-dimensional Navier-Stokes equation for non-divergent flows. Rotating coordinate systems and the shallow water equations. Linear solutions, potential vorticity, and geostrophy in the shallow water context. Shallow-water quasi-geostrophic approximation, including Rossby waves and barotrophic (Rayleigh) instability.
Terms: Fall 2018
Instructors: Kirshbaum, Daniel (Fall)
Atmospheric & Oceanic Sciences : Buoyancy, stability, and vertical oscillations. Dry and moist adiabatic processes. Resulting dry and precipitating convective circulations from the small scale to the global scale. Mesoscale precipitation systems from the cell to convective complexes. Severe convection, downbursts, mesocyclones.
Terms: Fall 2018
Instructors: Yau, Man K (Fall)
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2018, Winter 2019, Summer 2019
Instructors: Macdonald, Jeremy; Faifman, Dmitry (Fall) Sektnan, Lars (Winter) Pequignot, Yann Batiste (Summer)
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2018, Winter 2019
Instructors: Kelome, Djivede (Fall) Macdonald, Jeremy (Winter)
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2018, Winter 2019
Instructors: Roth, Charles (Fall) Drury, Stephen W (Winter)
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2018, Winter 2019, Summer 2019
Instructors: Nave, Jean-Christophe (Fall) Humphries, Antony Raymond (Winter) Roth, Charles (Summer)
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2018
Instructors: Dasgupta, Keshav (Fall)
Physics : The laws of thermodynamics and their consequences. Thermodynamics of P-V-T systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2019
Instructors: Rutledge, Robert (Winter)
Physics : Linear circuit elements, resonance, network theorems, diodes, transistors, amplifiers, feedback, integrated circuits.
Terms: Winter 2019
Instructors: Dobbs, Matthew Adam (Winter)
Winter
2 hours lectures; 3 hours laboratory alternate weeks
Prerequisite: CEGEP physics or PHYS 142.
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2018
Instructors: Siwick, Bradley (Fall)
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2019
Instructors: Brunner, Thomas (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257
Physics : Forced and damped oscillators, Newtonian mechanics in three dimensions, rotational motion, Lagrangian mechanics, small vibrations, normal modes. Introduction to Hamiltonian mechanics.
Terms: Winter 2019
Instructors: Caron-Huot, Simon (Winter)
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. Fermi-Dirac and Bose-Einstein distributions; applications.
Terms: Winter 2019
Instructors: Cline, James M (Winter)
Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.
Terms: Fall 2018
Instructors: Rutledge, Robert (Fall)
Physics : Maxwell's equations. The wave equation. The electromagnetic wave, reflection, refraction, polarization. Guided waves. Transmission lines and wave guides. Vector potential. Radiation. The elemental dipole; the half-wave dipole; vertical dipole; folded dipoles; Yagi antennas. Accelerating charged particles.
Terms: Winter 2019
Instructors: Gervais, Guillaume (Winter)
Physics : de Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2018
Instructors: Childress, Jack (Fall)
At least 6 of the 12 complementary credits must come from ATOC courses.
Atmospheric & Oceanic Sciences : Students will gain hands-on experience in several fundamental atmospheric and oceanic science topics through practical experimentation. A diverse set of experiments will be conducted, ranging from in situ observations in Montreal, to remote sensing of clouds and radiation, to laboratory chemistry and water-tank experiments. As a background for these experiments, students will receive training on sensor principles and measurement error analysis, as well as the fundamental physical processes of interest in each experiment. They will learn to operate, and physically interpret data from, various sensors for in situ and remote observation of meteorological variables. Their training will also extend to operational weather observations, analysis, and forecasting.
Terms: This course is not scheduled for the 2018-2019 academic year.
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
Prerequisite(s): ATOC 214 or permission of instructor.
Atmospheric & Oceanic Sciences : This course covers the essentials of climate physics through the lens of one-dimensional, vertical atmospheric models. This includes shortwave and longwave radiative transfer, convection, phase changes, clouds, greenhouse gases, and atmospheric escape. This is an adequate level of detail for understanding Earth's climate, paleoclimate, anthropogenic climate change, or pursuing studies of Solar System planets and extrasolar planets.
Terms: Fall 2018
Instructors: Merlis, Timothy (Fall)
Atmospheric & Oceanic Sciences : Introduction to the fluid dynamics of large-scale flows of the atmosphere and oceans. Stratification of atmosphere and oceans. Equations of state, thermodynamics and momentum. Kinematics, circulation, and vorticity. Hydrostatic and quasi-geostrophic flows. Brief introduction to wave motions, flow over topography, Ekman boundary layers, turbulence.
Terms: Fall 2018
Instructors: Bartello, Peter (Fall)
Atmospheric & Oceanic Sciences : Linear theory of waves in rotating and stratified media. Geostrophic adjustment and model initialization. Wave propagation in slowly varying media. Mountain waves; waves in shear flows. Barotropic, baroclinic, symmetric, and Kelvin-Helmholtz instability. Wave-mean flow interaction. Equatorially trapped waves.
Terms: Winter 2019
Instructors: Straub, David N (Winter)
Atmospheric & Oceanic Sciences : Application of statistical and semi-empirical methods to the study of geophysical turbulence. Reynolds' equations, dimensional analysis, and similarity. The surface and planetary boundary layers. Oceanic mixed layer. Theories of isotropic two- and three- dimensional turbulence: energy and enstrophy inertial ranges. Beta turbulence.
Terms: This course is not scheduled for the 2018-2019 academic year.
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
Atmospheric & Oceanic Sciences : Review of dry and moist atmospheric thermodynamics concepts. Atmospheric aerosols, nucleation of water and ice. Formation and growth of cloud droplets and ice crystals. Initiation of precipitation. Severe storms and hail. Weather modification. Numerical cloud models.
Terms: Winter 2019
Instructors: Zuend, Andreas (Winter)
Atmospheric & Oceanic Sciences : Solar and terrestrial radiation. Interactions of molecules, aerosols, clouds, and precipitation with radiation of various wavelengths. Radiative transfer through the clear and cloudy atmosphere. Radiation budgets. Satellite and ground-based measurements. Climate implications.
Terms: Fall 2018
Instructors: Huang, Yi (Fall)
Atmospheric & Oceanic Sciences : The general circulation of the atmosphere and oceans. Atmospheric and oceanic general circulation models. Observations and models of the El Niño and Southern Oscillation phenomena.
Terms: Fall 2018
Instructors: Merlis, Timothy (Fall)
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Description of a geostrophic, hydrostatic atmosphere. Ageostrophic circulations and hydrostatic instabilities. Kinematic and thermodynamic methods of computing vertical motions. Tropical and extratropical condensation rates. Barotropic and equivalent barotropic atmospheres.
Terms: Fall 2018
Instructors: Atallah, Eyad Hashem (Fall)
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Quasi-geostrophic theory, including the omega equation, as it relates to extratropical cyclone and anticyclone development. Frontogenesis and frontal circulations in the lower and upper troposphere. Cumulus convection and its relationship to tropical and extratropical circulations. Diagnostic case study work.
Terms: Winter 2019
Instructors: Atallah, Eyad Hashem (Winter)
Atmospheric & Oceanic Sciences : Numerical simulation of atmospheric and oceanic processes. Finite difference, finite element, and spectral modelling techniques. Term project including computer modelling of convection or large-scale flows in the atmosphere or ocean.
Terms: Fall 2018
Instructors: Yau, Man K (Fall)
Atmospheric & Oceanic Sciences : Research methods in physical oceanography including data analysis and literature review. Course will be divided into five separate modules focusing on temperature-salinity patterns, ocean circulation, boundary layers, wave phenomena and tides.
Terms: Winter 2019
Instructors: Dufour, Carolina (Winter)
Winter
3 hours lecture
Prerequisite (Undergraduate): ATOC 512 or permission of instructor
Restriction: Graduate students and final-year Honours Atmospheric Science students. Others by special permission.
Physics : Introduction to modern techniques of measurement. The use of computers in performing and analysing experiments. Data reduction, statistical methods, report writing. Extensive use of computers is made in this laboratory; therefore some familiarity with computers and computing is an advantage.
Terms: Winter 2019
Instructors: Reisner, Walter (Winter)
Winter
6 hours
Prerequisite: PHYS 241 or permission of instructor
Physics : This course covers the essentials of climate physics through the lens of one-dimensional, vertical atmospheric models. This includes shortwave and longwave radiative transfer, convection, phase changes, clouds, greenhouse gases, and atmospheric escape. This is an adequate level of detail for understanding Earth's climate, paleoclimate, anthropogenic climate change, or pursing studies of Solar System planets and extrasolar planets.
Terms: Fall 2018
Instructors: Merlis, Timothy (Fall)
Physics : The physical properties of fluids. The kinematics and dynamics of flow. The effects of viscosity and turbulence. Applications of fluid mechanics in biophysics, geophysics and engineering.
Terms: Winter 2019
Instructors: Jeon, Sang Yong (Winter)
Physics : Fundamental concepts of optics, including applications and modern developments. Light propagation in media; geometric optics and optical instruments; polarization and coherence properties of light; interference and interferometry; diffraction theory and applications in spectrometry and imaging; Fourier optics; selected special topics such as holography, lasers, beam optics, photonic crystals, advanced spectroscopy, stellar interferometry, quantum optics.
Terms: Winter 2019
Instructors: Graber, Vanessa (Winter)
Physics : Advanced level experiments in modern physics stressing quantum effects and some properties of condensed matter.
Terms: Fall 2018
Instructors: Childress, Jack (Fall)