![](/study/2016-2017/files/study.2016-2017/exclamation-point.png)
Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Students entering the Joint Major in Mathematics and Computer Science are normally expected to have completed the courses below or their equivalents. Otherwise, they will be required to make up any deficiencies in these courses over and above the 72 credits of courses in the program specification.
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases; quadratic loci in two and three dimensions.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Kelome, Djivede; Huang, Jingyin; Sharma, Amit; Aleyasin, Seyed Ali; Aryan, Farzad (Fall) Kelome, Djivede (Winter) Baratin, Aristide (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction A: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction B: Not open to students who have taken or are taking MATH 123, MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Restriction C: Not open to students who are taking or have taken MATH 134.
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Trudeau, Sidney; Jankiewicz, Katarzyna; Hu, Ying (Fall) Orson, Patrick (Winter) Lei, Tao (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Sektnan, Lars (Fall) Gobin, Damien; Trudeau, Sidney; Sektnan, Lars (Winter) Nica, Bogdan Lucian; Al Balushi, Ibrahim (Summer)
Restriction: Not open to students who have taken MATH 121 or CEGEP objective 00UP or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited
* Students who have sufficient knowledge in a programming language do not need to take COMP 202 but can replace it with an additional Computer Science complementary course.
Computer Science (Sci) : Introduction to computer programming in a high level language: variables, expressions, primitive types, methods, conditionals, loops. Introduction to algorithms, data structures (arrays, strings), modular software design, libraries, file input/output, debugging, exception handling. Selected topics.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Siddiqi, Kaleem; Lyman-Abramovitch, Melanie; Pomerantz, Daniel (Fall) Lyman-Abramovitch, Melanie; Oakes, Bentley; Alberini, Giulia (Winter) Becerra Romero, David (Summer)
3 hours
Prerequisite: a CEGEP level mathematics course
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2016, Winter 2017
Instructors: Meger, David (Fall) Vybihal, Joseph P (Winter)
Computer Science (Sci) : Mathematical tools (binary numbers, induction, recurrence relations, asymptotic complexity, establishing correctness of programs), Data structures (arrays, stacks, queues, linked lists, trees, binary trees, binary search trees, heaps, hash tables), Recursive and non-recursive algorithms (searching and sorting, tree and graph traversal). Abstract data types, inheritance. Selected topics.
Terms: Fall 2016, Winter 2017
Instructors: Langer, Michael (Fall) Blanchette, Mathieu (Winter)
Computer Science (Sci) : Introduction to algorithm design and analysis. Graph algorithms, greedy algorithms, data structures, dynamic programming, maximum flows.
Terms: Fall 2016, Winter 2017
Instructors: Crepeau, Claude (Fall) Waldispuhl, Jérôme (Winter)
Computer Science (Sci) : Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining.
Terms: Fall 2016, Winter 2017
Instructors: Kry, Paul (Fall) Vybihal, Joseph P (Winter)
3 hours
Corequisite: COMP 206.
Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.
Terms: Fall 2016, Winter 2017
Instructors: Verbrugge, Clark (Fall) Panangaden, Prakash (Winter)
3 hours
Prerequisite: COMP 250
Computer Science (Sci) : Control and scheduling of large information processing systems. Operating system software - resource allocation, dispatching, processors, access methods, job control languages, main storage management. Batch processing, multiprogramming, multiprocessing, time sharing.
Terms: Fall 2016, Winter 2017
Instructors: Maheswaran, Muthucumaru (Fall) Maheswaran, Muthucumaru (Winter)
3 hours
Prerequisite: COMP 273
Computer Science (Sci) : Advanced algorithm design and analysis. Linear programming, complexity and NP-completeness, advanced algorithmic techniques.
Terms: Fall 2016, Winter 2017
Instructors: Cai, Yang (Fall) Cai, Yang (Winter)
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Drury, Stephen W; Fox, Thomas F (Fall) Garver, Alexander (Winter) McGregor, Geoffrey (Summer)
Mathematics & Statistics (Sci) : Sets, functions and relations. Methods of proof. Complex numbers. Divisibility theory for integers and modular arithmetic. Divisibility theory for polynomials. Rings, ideals and quotient rings. Fields and construction of fields from polynomial rings. Groups, subgroups and cosets; group actions on sets.
Terms: Fall 2016
Instructors: Vonk, Jan (Fall)
Fall
3 hours lecture; 1 hour tutorial
Prerequisite: MATH 133 or equivalent
Mathematics & Statistics (Sci) : Linear equations over a field. Introduction to vector spaces. Linear mappings. Matrix representation of linear mappings. Determinants. Eigenvectors and eigenvalues. Diagonalizable operators. Cayley-Hamilton theorem. Bilinear and quadratic forms. Inner product spaces, orthogonal diagonalization of symmetric matrices. Canonical forms.
Terms: Winter 2017
Instructors: Patrias, Rebecca (Winter)
Winter
Prerequisite: MATH 235
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2016
Instructors: Hundemer, Axel W (Fall)
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Lu, Xinyang (Fall) Mitry, John (Winter) Roth, Charles (Summer)
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2016
Instructors: Saldanha Salvador, Tiago Miguel (Fall)
Mathematics & Statistics (Sci) : Propositional calculus, truth-tables, switching circuits, natural deduction, first order predicate calculus, axiomatic theories, set theory.
Terms: Fall 2016
Instructors: Sabok, Marcin (Fall)
Fall
Restriction: Not open to students who are taking or have taken PHIL 210
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Asgharian-Dastenaei, Masoud (Fall) Sen, Sanchayan (Winter) Kelome, Djivede (Summer)
Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.
Terms: Winter 2017
Instructors: Norin, Sergey (Winter)
9 credits from the set of courses recommended for a major or honours program in Mathematics.
9 credits selected from Computer Science courses at the 300 level or above (except COMP 364 and COMP 396) and ECSE 508.