![](/study/2016-2017/files/study.2016-2017/exclamation-point.png)
Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
(74-79 credits)
Interdisciplinary research that draws from the natural and physical sciences is an important aspect of modern biology. The Quantitative Biology (QB) Honours option is designed for students with a deep interest in biology who wish to gain a strong grounding in physical sciences and their application to biological questions through both coursework and a research project. The QB B.Sc. Honours option has two streams: a theoretical ecology and evolutionary biology stream and a physical biology stream. Both streams provide a balance of theory and experimental components that along with a research component will provide outstanding preparation for graduate training. Students must attain a 3.50 CGPA to enter and to complete the Honours program. First Class Honours will be awarded to students in the QB Honours option graduating with a CGPA of 3.75 or greater.
Students may complete this program with a minimum of 74 credits or a maximum of 79 credits depending on whether MATH 222 and CHEM 212 are completed.
It is highly recommended that freshman BIOL, CHEM, MATH, and PHYS courses be selected with the Program Adviser to ensure they meet the core requirements of the Quantitative Biology option.
This program is recommended for U1 students achieving a CGPA of 3.20 or better; and entering CEGEP students with a Math/Science R-score of 28.0 or better.
(42-45 credits)
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2016
Instructors: Zetka, Monique; Hastings, Kenneth E M; Roy, Richard D W; Lasko, Paul; Reyes Lamothe, Rodrigo (Fall)
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2017
Instructors: Brouhard, Gary (Winter)
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2017, Summer 2017
Instructors: Moon, Nam Sung; Nilson, Laura; Schoen, Daniel J (Winter) Dankort, David; Hipfner, David (Summer)
Biology (Sci) : An introduction to the fundamental processes of ecology and evolution that bear on the nature and diversity of organisms and the processes that govern their assembly into ecological communities and their roles in ecosystem function.
Terms: Fall 2016
Instructors: Potvin, Catherine; Abouheif, Ehab (Fall)
Biology (Sci) : Overview of concepts and current research in quantitative biology; theoretical ecology and evolution, computational biology, and physical biology.
Terms: Fall 2016
Instructors: Guichard, Frederic; Vogel, Jacalyn (Fall)
Biology (Sci) : Overview of concepts and current research in quantitative biology; theoretical ecology and evolution, computational biology, and physical biology.
Terms: Fall 2016
Instructors: Guichard, Frederic; Vogel, Jacalyn (Fall)
Fall
1 hour seminar
Prerequisite: BIOL 395
Restriction: Registration is restricted to U3 students in the Quantitative Biology program, joint COMP-BIOL, BIOL-MATH, PHGY-MATH and PHGY-PHYS programs.
Biology (Sci) : Independent research project.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Fall, Winter or Summer
Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course
Restriction: Open only to Biology students. Not open to students who have taken BIOL 471 or BIOL 471D1/D2.
Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.
3-4 credits:
*Students who have taken the equivalent of CHEM 212 can make up the credits with a complementary 3 or 4 credit course in consultation with a stream adviser.
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Sleiman, Hanadi; Pavelka, Laura (Fall) Lumb, Jean-Philip; Pavelka, Laura; Daoust, Michel; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
3 credits from:
Computer Science (Sci) : Introduction to computer programming in a high level language: variables, expressions, primitive types, methods, conditionals, loops. Introduction to algorithms, data structures (arrays, strings), modular software design, libraries, file input/output, debugging, exception handling. Selected topics.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Siddiqi, Kaleem; Lyman-Abramovitch, Melanie; Pomerantz, Daniel (Fall) Lyman-Abramovitch, Melanie; Oakes, Bentley; Alberini, Giulia (Winter) Becerra Romero, David (Summer)
3 hours
Prerequisite: a CEGEP level mathematics course
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250
Computer Science (Sci) : Mathematical tools (binary numbers, induction, recurrence relations, asymptotic complexity, establishing correctness of programs), Data structures (arrays, stacks, queues, linked lists, trees, binary trees, binary search trees, heaps, hash tables), Recursive and non-recursive algorithms (searching and sorting, tree and graph traversal). Abstract data types, inheritance. Selected topics.
Terms: Fall 2016, Winter 2017
Instructors: Langer, Michael (Fall) Blanchette, Mathieu (Winter)
(15-18 credits)
6 credits of either MATH or PHYS courses to be taken at the honours level. Honours equivalents of core Math and Physics courses are listed below. All 500-level Math courses are considered as honours courses and can be applied to the 6 credit requirement.
9-12 credits from:
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Drury, Stephen W; Fox, Thomas F (Fall) Garver, Alexander (Winter) McGregor, Geoffrey (Summer)
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2016, Winter 2017
Instructors: Nica, Bogdan Lucian (Fall) Pichot, Michael (Winter)
Mathematics & Statistics (Sci) : Matrix algebra, determinants, systems of linear equations. Abstract vector spaces, inner product spaces, Fourier series. Linear transformations and their matrix representations. Eigenvalues and eigenvectors, diagonalizable and defective matrices, positive definite and semidefinite matrices. Quadratic and Hermitian forms, generalized eigenvalue problems, simultaneous reduction of quadratic forms. Applications.
Terms: Winter 2017
Instructors: Hundemer, Axel W (Winter)
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Lu, Xinyang (Fall) Mitry, John (Winter) Roth, Charles (Summer)
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Asgharian-Dastenaei, Masoud (Fall) Sen, Sanchayan (Winter) Kelome, Djivede (Summer)
Mathematics & Statistics (Sci) : First and second order equations, linear equations, series solutions, Frobenius method, introduction to numerical methods and to linear systems, Laplace transforms, applications.
Terms: Winter 2017
Instructors: Humphries, Antony Raymond (Winter)
Mathematics & Statistics (Sci) : Sample space, probability axioms, combinatorial probability. Conditional probability, Bayes' Theorem. Distribution theory with special reference to the Binomial, Poisson, and Normal distributions. Expectations, moments, moment generating functions, uni-variate transformations. Random vectors, independence, correlation, multivariate transformations. Conditional distributions, conditional expectation.Modes of stochastic convergence, laws of large numbers, Central Limit Theorem.
Terms: Fall 2016
Instructors: Chen, Linan (Fall)
* For students who have NOT taken MATH 150 and MATH 151
** Students take MATH 223 or MATH 247
+ Students take MATH 315 or MATH 325
++ Students take MATH 323 or MATH 356
6 credits from:
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2016
Instructors: Pereg-Barnea, Tamar (Fall)
Physics : The laws of thermodynamics and their consequences. Thermodynamics of P-V-T systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2017
Instructors: Cornell, Jonathan (Winter)
Physics : Newton's laws, work energy, angular momentum. Harmonic oscillator, forced oscillations. Inertial forces, rotating frames. Central forces, centre of mass, planetary orbits, Kepler's laws.
Terms: Fall 2016
Instructors: Hanna, David (Fall)
Physics : Energy, work, heat; first law. Temperature, entropy; second law. Absolute zero; third law. Equilibrium, equations of state, gases, liquids, solids, magnets; phase transitions.
Terms: Fall 2016
Instructors: Gharbi, Mohamed (Fall)
* Students take PHYS 230 or PHYS 251
** Students take PHYS 232 or PHYS 253
24 or 25 credits from one of the following two streams:
Biology
12 credits from the following:
Biology (Sci) : Unified view of form and function in animals and plants. Focus on how the laws of chemistry and physics illuminate biological processes relating to the acquisition of energy and materials and their use in movement, growth, development, reproduction and responses to environmental stress.
Terms: Winter 2017
Instructors: Dhindsa, Rajinder S (Winter)
Biology (Sci) : Introduction to modern methods used in organismal biology, including ecological sampling, experimental methods and statistics, taxonomic and phylogenetic analysis of biodiversity, experimental behavioural ecology, microbiological methods, and library search procedures.
Terms: Fall 2016
Instructors: Cristescu, Elena; Miller-Nesbitt, Andrea; Lefebvre, Louis (Fall)
Fall
1.5 hours lecture, 3 hours laboratory and local field trip in week 1
Prerequisite: BIOL 111 or equivalent
Biology (Sci) : This course will show how the theory of evolution by natural selection provides the basis for understanding the whole of biology. The first half of the course describes the process of selection, while the second deals with evolution in the long term.
Terms: Fall 2016
Instructors: Abouheif, Ehab; Larsson, Hans Carl; Hendry, Andrew (Fall)
Biology (Sci) : Principles of population, community, and ecosystem dynamics: population growth and regulation, species interactions, dynamics of competitive interactions and of predator/prey systems; evolutionary dynamics.
Terms: Fall 2016
Instructors: Guichard, Frederic (Fall)
Field Courses
3 credits from the following list or any other field course with permission:
Biology (Sci) : Field studies of ferns, fern allies, conifers and flowering plants; the use of keys for plant identification.
Terms: Summer 2017
Instructors: Millien, Virginie; Lapointe, Melanie (Summer)
Prerequisite: BIOL 111 or permission
Restriction: Not open to students who have taken PLNT 358
Note: Taught at the Gault Nature Reserve. Contact instructor for specific dates, logistics: (virginie.millien [at] mcgill.ca).
This course is offered in the summer.
This course, given at the University’s Gault Nature Reserve in Mont St. Hilaire, has an additional fee of $421.55 which includes a hand lens, a textbook, handouts, lodging and supper each day.
Biology (Sci) : Methods of sampling natural populations. Testing hypotheses in nature.
Terms: Fall 2016
Instructors: Lechowicz, Martin J; Reader, Simon; Reddon, Adam (Fall)
Fall
Note: Preregistration in March and April. See Course web page: . Meets 12-days just before the fall term, with a project report early in the fall term.
The field portion of this course is given at the University's Gault Nature Reserve in Mont St. Hilaire over a two-week period in August. In the fall, students prepare a report based on projects carried out during this field portion. This course has an additional fee of $571.30 which includes room and board and handouts. The Department of Biology subsidizes a portion of the cost for this activity.
Biology (Sci) : Relevant to agriculture, forestry, fisheries and conservation of natural resources. Field component taught at the University's Bellairs Research Institute in Barbados, for two weeks in early May. The course is organized in a series of small-group field projects of 2-3 days each. Interested students should contact the Undergraduate Office and fill out an application form.
Terms: Winter 2017, Summer 2017
Instructors: Guichard, Frederic; Bureau, Thomas E; Leung, Brian (Winter) Guichard, Frederic; Bureau, Thomas E; Leung, Brian (Summer)
Summer
Prerequisites: BIOL 206; and BIOL 215 or both ENVR 200 and ENVR 202; and permission of the instructor.
This course, given in Barbados, has an additional fee of $1450 to cover the costs of room and board at Bellairs Research Institute, the course pack and all other expenses during the course. It does not cover tuition, airfare, flight insurance, airport taxes, meals in transit, or the cost of supplementary health insurance. The fee is refundable during the period where a student can drop the course with full refund. The Department of Biology subsidizes a portion of the cost for this activity.
Biology (Sci) : A study of the physical, chemical and biological properties of lakes and other inland waters, with emphasis on their functioning as systems.
Terms: Fall 2016
Instructors: Gregory-Eaves, Irene; Fussmann, Gregor (Fall)
Fall
2 hours lecture; 2 weekends at field station equivalent to 3 hours laboratory per week
Prerequisites: BIOL 206 and BIOL 215 or permission of instructor.
4 This course, involving two field weekends, has an additional fee of $304.50, which includes room and board and transportation. The fee is refundable during the period where a student can drop the course with full refund. The Department of Biology subsidizes a portion of the cost for this activity.
Restrictions: Not open to students who have taken or are taking ENVB 315.
9 credits chosen from the following list, of which 6 credits must be at the 400 level or above:
* Students choose either both BIOL 596 and BIOL 597, or BIOL 598.
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2016, Winter 2017
Instructors: Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Fall) Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Winter)
Fall or Winter
1 hour lecture and one 6-hour laboratory
Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.
Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.
For approval email anne-marie.sdicu [at] mcgill.ca. Specify your ID number as well as the term and two lab day preferences.
Biology (Sci) : Ecological bases of the natural causes and consequences of current global environmental changes, including how biodiversity and ecosystem processes are defined and measured, how they vary in space and time, how they are affected by physical and biological factors, and how they affect each other and human societies.
Terms: Winter 2017
Instructors: Davies, Thomas; Gray, Heather; Marleau, Justin (Winter)
Biology (Sci) : This course presents evolutionary genetics within an ecological context. The course covers theoretical topics together with relevant data from natural populations of plants and animals.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Fall
2 hours lecture, 1 hour seminar
Prerequisite: BIOL 202
Biology (Sci) : A study of the physical, chemical and biological properties of lakes and other inland waters, with emphasis on their functioning as systems.
Terms: Fall 2016
Instructors: Gregory-Eaves, Irene; Fussmann, Gregor (Fall)
Fall
2 hours lecture; 2 weekends at field station equivalent to 3 hours laboratory per week
Prerequisites: BIOL 206 and BIOL 215 or permission of instructor.
4 This course, involving two field weekends, has an additional fee of $304.50, which includes room and board and transportation. The fee is refundable during the period where a student can drop the course with full refund. The Department of Biology subsidizes a portion of the cost for this activity.
Restrictions: Not open to students who have taken or are taking ENVB 315.
Biology (Sci) : Study of theoretical ecology and of mathematical tools available to explore the dynamical behaviour of model populations, communities and ecosystems. Models addressing major ecological theories including population stability, community dynamics and ecosystem functioning, epidemic and disturbance dynamics, spatial models, game theory.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Biology (Sci) : Explains how the selection of undirected variation accounts for some of the leading features of the natural world. Its main focus is evolutionary change and adaptation, but it will also include material from ecological, economic, biochemical and computer systems. It emphasizes experimental studies of evolution.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Fall
3 hours of lecture
Prerequisite: BIOL 304 or permission of instructor.
Biology (Sci) : Discussion of relevant theoretical and applied issues in conservation biology. Topics: biodiversity, population viability analysis, community dynamics, biology of rarity, extinction, habitat fragmentation, social issues.
Terms: Fall 2016
Instructors: Chapman, Lauren; Gray, Heather; Green, David M (Fall)
Biology (Sci) : An overview of the molecular genetic tools used to investigate ecological and evolutionary processes in natural populations. The use of molecular tools in studies of population structure, parentage, kinship, species boundaries, phylogenetics. Special topics include conservation genetics, population genetics, and ecological genomics.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Biology (Sci) : The origin, maintenance and roles of biological diversity within ecological communities.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Biology (Sci) : Aquatic ecology and the major issues challenging the field.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Biology (Sci) : Causes and consequences of biological invasion, as well as risk assessment methods and management strategies for dealing with invasive species.
Terms: Winter 2017
Instructors: Ricciardi, Anthony (Winter)
Biology (Sci) : Evolutionary ecology is the study of evolutionary change in natural populations. General predictive approaches in evolutionary ecology, including population genetics, quantitative genetics, optimality, and game theory will be examined. Emphasis will be placed on the mathematical underpinnings of each approach, particularly as they relate to classic and contemporary problems.
Terms: Fall 2016
Instructors: Hendry, Andrew (Fall)
Biology (Sci) : This course focuses on experimental design as it relates to statistical analyses to prepare individuals for data collection. Instructors will provide information on basic statistical principles and require students to prepare presentations about their experiments, write summaries of their research, and discuss and critique journal articles.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Prerequisite: BIOL 373 or equivalent and permission of instructor
Biology (Sci) : This course will concentrate on the practical application of data analytical approaches with particular experimental questions in mind. Techniques presented will include statistical methods such as linear models, multivariate statistics, data reduction, information theory.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Biology (Sci) : This course will address issues related to experimental design and multivariate statistical analysis. The first third of the course will focus on experimental design, and the remainder of the course will focus on multivariate approaches to data analysis. The course is designed to inform students on best practices to analytically address their experimental questions.
Terms: Winter 2017
Instructors: Sakata, Jon (Winter)
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2016, Winter 2017
Instructors: Côté, Marie-Pier (Fall) Asgharian-Dastenaei, Masoud (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
13 credits
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2016, Winter 2017
Instructors: Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Fall) Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Winter)
Fall or Winter
1 hour lecture and one 6-hour laboratory
Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.
Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.
For approval email anne-marie.sdicu [at] mcgill.ca. Specify your ID number as well as the term and two lab day preferences.
Biology (Sci) : Emerging physical approaches and quantitative measurement techniques are providing new insights into longstanding biological questions. This course will present underlying physical theory, quantitative measurement techniques, and significant findings in molecular and cellular biophysics. Principles covered include Brownian motion, low Reynolds-number environments, forces relevant to cells and molecules, chemical potentials, and free energies. These principles are applied to enzymes as molecular machines, membranes, DNA, and RNA.
Terms: Winter 2017
Instructors: Wiseman, Paul (Winter)
Physics : Emerging physical approaches and quantitative measurement techniques are providing new insights into longstanding biological questions. This course will present underlying physical theory, quantitative measurement techniques, and significant findings in molecular and cellular biophysics. Principles covered include Brownian motion, low Reynolds-number environments, forces relevant to cells and molecules, chemical potentials, and free energies. These principles are applied to enzymes as molecular machines, membranes, DNA, and RNA.
Terms: Winter 2017
Instructors: Wiseman, Paul (Winter)
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. Fermi-Dirac and Bose-Einstein distributions; applications.
Terms: Winter 2017
Instructors: Leslie, Sabrina (Winter)
Physics : Quantum states and ensemble averages. Fermi-Dirac, Bose-Einstein and Boltzmann distribution functions and their applications.
Terms: Winter 2017
Instructors: Grant, Martin (Winter)
Physics : de Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2016
Instructors: Cumming, Andrew (Fall)
* Students choose either BIOL 319 or PHYS 319
** Students choose either PHYS 333 or PHYS 362
300-level complementary courses: 6 credits from the following:
Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.
Terms: Fall 2016
Instructors: Schöck, Frieder; Moon, Nam Sung (Fall)
Biology (Sci) : A consideration of the fundamental processes and principles operating during embryogenesis. Experimental analyses at the molecular, cellular, and organismal levels will be presented and discussed to provide an overall appreciation of developmental phenomena.
Terms: Winter 2017
Instructors: Hendricks, Shelton; Rao, Yong; Dufort, Daniel (Winter)
Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.
Terms: Fall 2016
Instructors: Watt, Alanna; Sakata, Jon (Fall)
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2016
Instructors: Glass, Leon (Fall)
Fall
3 hours lecture
Prerequisite: one year of calculus. An additional course in calculus is recommended
Biology (Sci) : Cell biology of eukaryotes focusing on the assembly and function of cellular structures, the regulation of transcription; the dynamics of the cytoskeleton and its motors; mechanics of cell division; cell cycle and checkpoints; nuclear dynamics; chromosome structure and behaviour and experimental techniques.
Terms: Winter 2017
Instructors: Zetka, Monique; Weber, Stephanie (Winter)
500-level complementary courses: 6 credits from the following:
Biology (Sci) : Concepts and mechanisms in advanced cell biology, based on genetic, cell biological, biophysical, and computational studies. Emphasis is placed on processes that are evolutionarily conserved, with examples from model organisms and cell-free (in vitro) approaches.
Terms: Winter 2017
Instructors: Harrison, Paul; Reyes Lamothe, Rodrigo (Winter)
Winter
3 hours seminar
Prerequisite: BIOL 313 or permission
Biology (Sci) : An analysis of the role and regulation of gene expression in several models of eukaryotic development. The emphasis will be on critical evaluation of recent literature concerned with molecular or genetic approaches to the problems of cellular differentiation and determination. Recent research reports will be discussed in conferences and analyzed in written critiques.
Terms: Winter 2017
Instructors: Roy, Richard D W (Winter)
Biology (Sci) : Molecular genetics and molecular, cellular and developmental biology, including signal transduction, cell differentiation and function, genetic diseases in eukaryotes.
Terms: Fall 2016
Instructors: Clarke, Hugh; Dankort, David (Fall)
Biology (Sci) : Fundamental principles of cellular control, with cell cycle control as a major theme. Biological and physical concepts are brought to bear on control in healthy cells..
Terms: Winter 2017
Instructors: Vogel, Jacalyn; Francois, Paul (Winter)
Biology (Sci) : Discussion of fundamental molecular mechanisms underlying the general features of cellular neurobiology. An advanced course based on lectures and on a critical review of primary research papers.
Terms: Fall 2016
Instructors: Hastings, Kenneth E M; Carbonetto, Salvatore T (Fall)
Physics : An advanced biophysics course, with a special emphasis on stochastic and out of equilibrium physical processes in living matter.
Terms: Winter 2017
Instructors: Francois, Paul (Winter)
Recommendations for either Theoretical Ecology and Evolutionary Biology or Physical Biology streams
9 credits from the following:
Biology (Sci) : Independent research project.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Fall, Winter or Summer
Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.
Restrictions: Open only to Biology students. Not open to students who have taken BIOL 477.
Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2016, Winter 2017
Instructors: Meger, David (Fall) Vybihal, Joseph P (Winter)
Computer Science (Sci) : Mathematical tools (binary numbers, induction, recurrence relations, asymptotic complexity, establishing correctness of programs), Data structures (arrays, stacks, queues, linked lists, trees, binary trees, binary search trees, heaps, hash tables), Recursive and non-recursive algorithms (searching and sorting, tree and graph traversal). Abstract data types, inheritance. Selected topics.
Terms: Fall 2016, Winter 2017
Instructors: Langer, Michael (Fall) Blanchette, Mathieu (Winter)
Computer Science (Sci) : Introduction to algorithm design and analysis. Graph algorithms, greedy algorithms, data structures, dynamic programming, maximum flows.
Terms: Fall 2016, Winter 2017
Instructors: Crepeau, Claude (Fall) Waldispuhl, Jérôme (Winter)
Computer Science (Sci) : Computer representation of numbers, IEEE Standard for Floating Point Representation, computer arithmetic and rounding errors. Numerical stability. Matrix computations and software systems. Polynomial interpolation. Least-squares approximation. Iterative methods for solving a nonlinear equation. Discretization methods for integration and differential equations.
Terms: Fall 2016
Instructors: Chang, Xiao-Wen (Fall)
Computer Science (Sci) : Concepts and tools for programmatic storage, retrieval, searching, numerical analysis, and visualization of large biological data sets.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2016, Winter 2017
Instructors: Roth, Charles (Fall) Drury, Stephen W (Winter)
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2016
Instructors: Saldanha Salvador, Tiago Miguel (Fall)
Mathematics & Statistics (Sci) : First order equations, geometric theory; second order equations, classification; Laplace, wave and heat equations, Sturm-Liouville theory, Fourier series, boundary and initial value problems.
Terms: Winter 2017
Instructors: Bartello, Peter (Winter)
Mathematics & Statistics (Sci) : Linear systems of differential equations, linear stability theory. Nonlinear systems: existence and uniqueness, numerical methods, one and two dimensional flows, phase space, limit cycles, Poincare-Bendixson theorem, bifurcations, Hopf bifurcation, the Lorenz equations and chaos.
Terms: Fall 2016
Instructors: Humphries, Antony Raymond (Fall)
Mathematics & Statistics (Sci) : An overview of numerical methods for linear algebra applications and their analysis. Problem classes include linear systems, least squares problems and eigenvalue problems.
Terms: Winter 2017
Instructors: Panayotov, Ivo (Winter)
Mathematics & Statistics (Sci) : Selected topics - the particular selection may vary from year to year. Topics include: isometries in the plane, symmetry groups of frieze and ornamental patterns, equidecomposibility, non-Euclidean geometry and problems in discrete geometry.
Terms: Fall 2016
Instructors: Przytycki, Piotr (Fall)
Prerequisite: MATH 133 or equivalent or permission of instructor.
Mathematics & Statistics (Sci) : The formulation and treatment of realistic mathematical models describing biological phenomena through qualitative and quantitative mathematical techniques (e.g. local and global stability theory, bifurcation analysis and phase plane analysis) and numerical simulation. Concrete and detailed examples will be drawn from molecular and cellular biology and mammalian physiology.
Terms: Winter 2017
Instructors: Khadra, Anmar (Winter)
Mathematics & Statistics (Sci) : Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains, transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.
Terms: Winter 2017
Instructors: Wolfson, David B (Winter)
* Students may take COMP 350 OR MATH 317.
Recommendations for Physical Biology stream
BIEN : Forward and reverse engineering of biomolecular systems. Principles of biomolecular thermodynamics and kinetics. Structure and function of the main classes of biomolecules including proteins, nucleic acids, and lipids. Biomolecular systems as mechanical, chemical, and electrical systems. Rational design and evolutionary methods for engineering functional proteins, nucleic acids, and gene circuits. Rational design topics include molecular modeling, positive and negative design paradigms, simulation and optimization of equilibrium and kinetic properties, design of catalysts, sensors, motors, and circuits. Evolutionary design topics include evolutionary mechanisms, fitness landscapes, directed evolution of proteins, metabolic pathways, and gene circuits. Systems biology and synthetic biology.
Terms: Fall 2016
Instructors: Xia, Yu (Fall)
Prerequisite(s): BIEN 200 or permission of instructor.
(3-0-6)
BIEN : Basic mechanics of biological building blocks, focusing on the cytoskeleton, with examples from pathology. At the macromolecular level: weak/variable crosslinking and hydrolysis driven athermal processes. At the cellular/tissue level: cell architecture and function. Discussion of modern analytical techniques capable of single-molecule to tissue scale measurements.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
BIEN : Fundamental principles of mass transport and its application to a variety of biological systems. Membrane permeability and diffusive transport. Convection. Transport across cell membranes. Ion channels. Blood rheology. Active transport. Intra- and inter-cellular transport.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
BIEN : Introduction to the interdisciplinary field of biomedical uses of nanotechnology. Emphasis on emerging nanotechnologies and biomedical applications including nanomaterials, nanoengineering, nanotechnology-based drug delivery systems, nano-based imaging and diagnostic systems, nanotoxicology and immunology, and translating nanomedicine into clinical investigation.
Terms: Fall 2016, Winter 2017
Instructors: Kinsella, Joseph (Fall) Kinsella, Joseph (Winter)
BIEN : Microscopy techniques with application to biology and medicine. Practical introduction to optics and microscopy from the standpoint of biomedical research. Discussion of recent literature; hands-on experience. Topics include: optics, contrast techniques, advanced microscopy, and image analysis.
Terms: Winter 2017
Instructors: Hendricks, Adam (Winter)
Prerequisite: Permission of instructor.
(3-1-5)
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2016, Winter 2017, Summer 2017
Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Perepichka, Dmytro (Fall) Pavelka, Laura; Daoust, Michel; Gauthier, Jean-Marc; Li, Chaojun (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2016, Winter 2017
Instructors: Côté, Marie-Pier (Fall) Asgharian-Dastenaei, Masoud (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Physics : Properties of electromagnetic fields, dipole and quadropole fields and their interactions, chemical binding of molecules, electromagnetic properties of materials, Maxwell's equations and properties of electromagnetic waves, propagation of waves in media.
Terms: Fall 2016
Instructors: Guo, Hong (Fall)
Fall
2 hours lectures
Prerequisites: CEGEP Physics, MATH 222
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2016
Instructors: Siwick, Bradley (Fall)
Physics : Maxwell's equations. The wave equation. The electromagnetic wave, reflection, refraction, polarization. Guided waves. Transmission lines and wave guides. Vector potential. Radiation. The elemental dipole; the half-wave dipole; vertical dipole; folded dipoles; Yagi antennas. Accelerating charged particles.
Terms: Winter 2017
Instructors: Gervais, Guillaume (Winter)
Physics : Analytic and computer simulation techniques are used to examine the role of nonlinearities and time delays in determining the dynamic behaviour of physiological control systems and their relation to normal and pathophysiological states. Examples drawn from the control of respiration, cellular proliferation and differentiation, biochemical feedback networks, thermoregulatory mechanisms, and neural feedback.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
Physics : Fundamental concepts of optics, including applications and modern developments. Light propagation in media; geometric optics and optical instruments; polarization and coherence properties of light; interference and interferometry; diffraction theory and applications in spectrometry and imaging; Fourier optics; selected special topics such as holography, lasers, beam optics, photonic crystals, advanced spectroscopy, stellar interferometry, quantum optics.
Terms: Winter 2017
Instructors: Haggard, Daryl (Winter)
Physics : de Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2016
Instructors: Cumming, Andrew (Fall)
Physics : An advanced biophysics course, with a special emphasis on stochastic and out of equilibrium physical processes in living matter.
Terms: Winter 2017
Instructors: Francois, Paul (Winter)
Physics : Topics include scanning probe microscopy, chemical self-assembly, computer modelling, and microfabrication/micromachining.
Terms: Fall 2016
Instructors: Grutter, Peter H (Fall)
Fall
Restriction: U3 or graduate students in Physics, Chemistry, or Engineering, or permission of the instructor.
* PHYS 242 is required for PHYS 342 and PHYS 434.
Recommendations for Theoretical Ecology and Evolutionary Biology stream
Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.
Terms: Winter 2017
Instructors: Correa, Jose Andres (Winter)
Winter
Prerequisite: MATH 203 or equivalent. No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2016
Instructors: Hundemer, Axel W (Fall)
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2016, Winter 2017
Instructors: Côté, Marie-Pier (Fall) Asgharian-Dastenaei, Masoud (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.
Terms: Winter 2017
Instructors: Norin, Sergey (Winter)
Mathematics & Statistics (Sci) : Least-squares estimators and their properties. Analysis of variance. Linear models with general covariance. Multivariate normal and chi-squared distributions; quadratic forms. General linear hypothesis: F-test and t-test. Prediction and confidence intervals. Transformations and residual plot. Balanced designs.
Terms: Fall 2016
Instructors: Stephens, David (Fall)
Mathematics & Statistics (Sci) : Distribution free procedures for 2-sample problem: Wilcoxon rank sum, Siegel-Tukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: Kruskal-Wallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chi-square, likelihood ratio, Kolmogorov-Smirnov tests. Statistical software packages used.
Terms: Fall 2016
Instructors: Wolfson, David B (Fall)
Mathematics & Statistics (Sci) : Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.
Terms: Winter 2017
Instructors: Steele, Russell (Winter)
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. Fermi-Dirac and Bose-Einstein distributions; applications.
Terms: Winter 2017
Instructors: Leslie, Sabrina (Winter)
* PHYS 333 is now required for the Physical Biology stream