![](/study/2016-2017/files/study.2016-2017/exclamation-point-small.png)
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
* Students who have taken CHEM 212 and/or CHEM 222 in CEGEP are exempted and must replace these credits with an elective course(s).
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2010
Instructors: Roy, Richard D W; Brown, Gregory G; Fagotto, Francesco; Zetka, Monique (Fall)
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2011, Summer 2011
Instructors: Schoen, Daniel J; Chevrette, Mario; Western, Tamara (Winter) Dankort, David; Western, Tamara (Summer)
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2010, Winter 2011
Instructors: Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Fall) Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Winter)
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Daoust, Michel; Tsantrizos, Youla S; Moitessier, Nicolas (Fall) Daoust, Michel; Fenster, Ariel; Schirrmacher, Ralf (Winter) Daoust, Michel; Fenster, Ariel (Summer)
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Daoust, Michel; Gleason, James L (Fall) Auclair, Karine; Daoust, Michel (Winter) Daoust, Michel; Schwarcz, Joseph A (Summer)
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2010
Instructors: Wechsler, Ann; Gold, Phil; Cook, Erik (Fall)
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2011
Instructors: White, John H; Wechsler, Ann; Lauzon, Anne-Marie (Winter)
Physiology : Exercises illustrating fundamental principles in physiology: Biological Signals Acquisitions, Blood, Immunology, Neurophysiology, Neuromuscular Physiology.
Terms: Fall 2010
Instructors: Martinez Trujillo, Julio; Glavinovic, Mladen I; Jones, Russell (Fall)
Physiology : Exercises illustrating fundamental principles in physiology: Central Nervous System, Cardiovascular, Respiration, Exercise Physiology, Molecular Endocrinology.
Terms: Winter 2011
Instructors: Guevara, Michael R; Watt, Douglas; Farookhi, Riaz; Magder, Sheldon A (Winter)
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2010
Instructors: Cooper, Ellis; Haghighi, Ali (Fall)
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.
Terms: Winter 2011
Instructors: Hanrahan, John W; Mortola, Jacopo; Magder, Sheldon A (Winter)
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.
Terms: Winter 2011
Instructors: Martinez Trujillo, Julio; Blank, Volker Manfred; Jones, Russell (Winter)
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2010
Instructors: Watt, Douglas; Martinez Trujillo, Julio; Vollrath, Melissa (Fall)
12 credits selected as follows:
3 credits selected from:
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2011
Instructors: Duchaine, Thomas; Pause, Arnim; Reinhardt, Dieter (Winter)
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2011
Instructors: Levine, Robert; Hewitt, Kathryn; Brouhard, Gary (Winter)
3 credits selected from:
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2010
Instructors: Glass, Leon (Fall)
Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.
Terms: Fall 2010
Instructors: Seizilles de Mazancourt, Claire; Potvin, Catherine (Fall)
6 credits selected from the Upper-Level Physiology (ULP) course list as follows:
All Physiology courses 400 level and above.
Note:
The 6-credit course PHGY 459D1/D2 equals 3 credits of ULP and 3 credits of electives.
The 9-credit course PHGY 461D1/D2 equals 3 credits of ULP and 6 credits of electives.
Anatomy & Cell Biology : Complex aging process, including theories and mechanisms of aging, animal model systems used to study aging, age-dependent diseases, for example, Alzheimer's, osteoporosis, and cancer, and age-related diseases, for example, Werner's syndrome and dyskeratosis congenita.
Terms: Winter 2011
Instructors: Lehoux, Stephanie; Autexier, Chantal (Winter)
Biology (Sci) : Discussions of all aspects of nervous system development including pattern formation, cell lineage, pathfinding and targeting by growing axons, and neuronal regeneration. The basis for these discussions will be recent research papers and other assigned readings.
Terms: Winter 2011
Instructors: Levine, Robert; Van Meyel, Donald (Winter)
Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.
Terms: Fall 2010
Instructors: Kearney, Robert E (Fall)
Experimental Medicine : This course is designed for U3 students who are in a major or honours program in anatomy, biology, biochemistry or physiology and for graduate students. A multidisciplinary approach will be used to teach biosynthesis and processing of hormones, their regulation, function and mechanism of action. The material will cover hypothalamic, pituitary, thyroid, atrial and adrenal hormones as well as prostaglandins and related substances.
Terms: Fall 2010
Instructors: Bennett, Hugh P J; Bateman, Andrew (Fall)
Experimental Medicine : Study of the parathyroids, gut and pancreatic hormones and growth factors. In addition, the role of hormones and growth factors in reproduction and fetal maturation will be discussed.
Terms: Winter 2011
Instructors: Bennett, Hugh P J (Winter)
Experimental Medicine : Offered in conjunction with the Department of Physiology. Current topics, methods and techniques for studying the cardiovascular system. Basic and applied cardiac electrophysiology, mechanisms of pacemaker activity, arrhythmias, the effects of drugs on cardiac functions, fetal circulation, coronary circulation, mechanics of blood flow, cardiovascular diseases, renal and neural control of the circulation, and cardiac assist devices.
Terms: Fall 2010
Instructors: Giaid, Adel (Fall)
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of respiratory biology including: functional anatomy of the respiratory system, pulmonary statics and dynamics, chest wall and respiratory muscles, ventilation and perfusion, control of breathing, and defense mechanisms. This course is aimed at providing a solid grounding in pulmonary biology and its research applications.
Terms: Fall 2010
Instructors: Petrof, Basil (Fall)
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of developmental physiology, pulmonary vascular physiology, biology of airway smooth muscle, respiratory epithelium and molecular biology of respiratory muscles. Dyspnea, mechanical ventilation and respiratory failure will also be covered. This course emphasizes application of respiratory biology to basic and applied research and touches on pulmonary pathophysiology.
Terms: Winter 2011
Instructors: Fixman, Elizabeth Dee (Winter)
Microbiology and Immun (Sci) : A study of the biology, immunological aspects of host-parasite interactions, pathogenicity, epidemiology and molecular biological aspects of selected parasites of medical importance. Laboratory will consist of a lecture on techniques, demonstrations and practical work.
Terms: Winter 2011
Instructors: Ali Khan, Zafer; Olivier, Martin; Dalton, John (Winter)
Microbiology and Immun (Sci) : An advanced course serving as a logical extension of MIMM 314. The course will integrate molecular, cellular and biochemical events involved in the ontogeny of the lymphoid system and its activation in the immune response. The course will provide the student with an up-to-date understanding of a rapidly moving field.
Terms: Fall 2010
Instructors: Fournier, Sylvie; Olivier, Martin; Fritz, Jörg (Fall)
Microbiology and Immun (Sci) : Organized by the º«¹úÂãÎè Centre for the Study of Host Resistance. This course focuses on the interplay of the host and the pathogen. The cellular and molecular basis of the host defense mechanism against infections will be considered in relationship to the virulence factors and evasion strategies used by bacteria to cause disease.
Terms: Fall 2010
Instructors: Le-Moual, Herve; Olivier, Martin; Dzierszinski, Florence (Fall)
Microbiology and Immun (Sci) : A study of the biological and molecular aspects of viral pathogenesis with emphasis on the human pathogenic viruses including the retroviruses HIV and HTLV-1; herpes viruses; papilloma viruses; hepatitis viruses; and new emerging human viral diseases. These viruses will be discussed in terms of virus multiplication, gene expression virus-induced cytopathic effects and host immune response to infection.
Terms: Winter 2011
Instructors: Gatignol, Anne; Liang, Chen; Chalifour, Lorraine E (Winter)
Psychology : Memory systems are studied with an emphasis on the neural computations that occur at various stages of the processing stream, focusing on the hippocampus, amygdala, basal ganglia, cerebellum and cortex. The data reviewed is obtained from human, non-human primates and rodents, with single unit recording, neuroimaging and brain damaged subjects.
Terms: Winter 2011
Instructors: Rajah, Maria (Winter)
Psychiatry : Current theories on the neurobiological basis of most well known mental disorders (e.g. schizophrenia, depression, anxiety, dementia). Methods and strategies in research on genetic, physiological and biochemical factors in mental illness will be discussed. Discussion will also focus on the rationale for present treatment approaches and on promising new approaches.
Terms: Winter 2011
Instructors: Srivastava, Lalit K; Wong, Tak Pan (Winter)