![](/study/2016-2017/files/study.2016-2017/exclamation-point-small.png)
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Students may complete this program with a minimum of 45 credits or a maximum of 47 credits depending on their choice of complementary courses.
* If a student has already taken CHEM 212 or its equivalent, the 4 credits can be made up with a 3-credit complementary.
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2010
Instructors: Roy, Richard D W; Brown, Gregory G; Fagotto, Francesco; Zetka, Monique (Fall)
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2011
Instructors: Levine, Robert; Hewitt, Kathryn; Brouhard, Gary (Winter)
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2011, Summer 2011
Instructors: Schoen, Daniel J; Chevrette, Mario; Western, Tamara (Winter) Dankort, David; Western, Tamara (Summer)
Biology (Sci) : Unified view of form and function in animals and plants. Focus on how the laws of chemistry and physics illuminate biological processes relating to the acquisition of energy and materials and their use in movement, growth, development, reproduction and responses to environmental stress.
Terms: Winter 2011
Instructors: Dhindsa, Rajinder S (Winter)
Biology (Sci) : An introduction to the fundamental processes of ecology and evolution that bear on the nature and diversity of organisms and the processes that govern their assembly into ecological communities and their roles in ecosystem function.
Terms: Fall 2010
Instructors: Price, Neil; Larsson, Hans Carl; Potvin, Catherine (Fall)
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Daoust, Michel; Tsantrizos, Youla S; Moitessier, Nicolas (Fall) Daoust, Michel; Fenster, Ariel; Schirrmacher, Ralf (Winter) Daoust, Michel; Fenster, Ariel (Summer)
Students complete a minimum of 27 credits or a maximum of 28 complementary course credits selected as follows:
3 or 4 credits selected from:
Biology (Sci) : Introduction to modern methods used in organismal biology, including ecological sampling, experimental methods and statistics, taxonomic and phylogenetic analysis of biodiversity, experimental behavioural ecology, microbiological methods, and library search procedures.
Terms: Fall 2010
Instructors: Gonzalez, Andrew; MacLean, Eleanor; Schoen, Daniel J (Fall)
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2010, Winter 2011
Instructors: Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Fall) Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Winter)
9 credits of which, in consultation with the Program Adviser, can be replaced with appropriate Science courses from other departments.
No more than 6 of the 24 credits can be taken at the 200 level.