![](/study/2016-2017/files/study.2016-2017/exclamation-point-small.png)
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
All admissions to the Honours program will be in U2, and the student must have a U1 GPA of 3.30, with no less than a B in PHGY 209 and PHGY 210. Admission to U3 requires a U2 CGPA of 3.20 with no less than a B in U2 Physiology courses. Decisions for admission to U3 will be heavily influenced by student standing in U2 courses.
The Department reserves the right to restrict the number of entering students in the Honours program. Students who do not maintain Honours standing may transfer their registration to the Major program in Physiology.
The deadline to apply to the Honours program is June 13. Application forms are available in McIntyre 1021. Students should include in their letters telephone numbers where they can be reached during the last week of August. Students are responsible for picking up their letters of decision in McIntyre 1021 no later than one week before classes start.
Graduation: To graduate from the Honours Physiology program, the student will have a CGPA of 3.20 with a mark no less than a B in all Physiology courses.
If not previously taken, CHEM 212 Introductory Organic Chemistry 1 must be completed in addition to the 75 program credits.
Anatomy & Cell Biology : An introduction to light and electron microscopic anatomy in which cell and tissue dynamics will be explored in the principal tissues and organs of the body.
Terms: Fall 2010
Instructors: Mandato, Craig A.; Morales, Carlos R (Fall)
Biochemistry : The generation of metabolic energy in higher organisms with an emphasis on its regulation at the molecular, cellular and organ level. Chemical concepts and mechanisms of enzymatic catalysis are also emphasized. Included: selected topics in carbohydrate, lipid and nitrogen metabolism; complex lipids and biological membranes; hormonal signal transduction.
Terms: Fall 2010
Instructors: St-Pierre, Julie; Dostie, Josee; Kiss, Robert (Fall)
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2010
Instructors: Roy, Richard D W; Brown, Gregory G; Fagotto, Francesco; Zetka, Monique (Fall)
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2011, Summer 2011
Instructors: Schoen, Daniel J; Chevrette, Mario; Western, Tamara (Winter) Dankort, David; Western, Tamara (Summer)
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2010, Winter 2011
Instructors: Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Fall) Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Winter)
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Daoust, Michel; Gleason, James L (Fall) Auclair, Karine; Daoust, Michel (Winter) Daoust, Michel; Schwarcz, Joseph A (Summer)
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2010
Instructors: Wechsler, Ann; Gold, Phil; Cook, Erik (Fall)
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2011
Instructors: White, John H; Wechsler, Ann; Lauzon, Anne-Marie (Winter)
Physiology : Exercises illustrating fundamental principles in physiology: Biological Signals Acquisitions, Blood, Immunology, Neurophysiology, Neuromuscular Physiology.
Terms: Fall 2010
Instructors: Martinez Trujillo, Julio; Glavinovic, Mladen I; Jones, Russell (Fall)
Physiology : Exercises illustrating fundamental principles in physiology: Central Nervous System, Cardiovascular, Respiration, Exercise Physiology, Molecular Endocrinology.
Terms: Winter 2011
Instructors: Guevara, Michael R; Watt, Douglas; Farookhi, Riaz; Magder, Sheldon A (Winter)
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2010
Instructors: Cooper, Ellis; Haghighi, Ali (Fall)
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.
Terms: Winter 2011
Instructors: Hanrahan, John W; Mortola, Jacopo; Magder, Sheldon A (Winter)
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.
Terms: Winter 2011
Instructors: Martinez Trujillo, Julio; Blank, Volker Manfred; Jones, Russell (Winter)
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2010
Instructors: Watt, Douglas; Martinez Trujillo, Julio; Vollrath, Melissa (Fall)
Physiology : Provides an overview of common research methods in Physiology, including critical analysis and practical experience with some of the methods. Topics include research ethics of animal experimentation, data analysis, membrane biophysics, radioimmunoassay, ion sensitive dyes, immunocytochemistry, localization techniques, protein transport, cell sorting and molecular biology.
Terms: Winter 2011
Instructors: Lukacs, Gergely; MacLean, Eleanor; Vollrath, Melissa (Winter)
Physiology : The course consists of regularly scheduled meetings between each individual student and a chosen staff member, to consider current problems in biomedical research and to develop background for a research project to be carried out in U3. Brief written summaries of each meeting are required.
Terms: Fall 2010
Instructors: Farookhi, Riaz (Fall)
Physiology : See PHGY 359D1 for course description.
Terms: Winter 2011
Instructors: Farookhi, Riaz (Winter)
Physiology : Discussion of topics in mammalian, cellular and molecular physiology. Students will be required to write one essay and make at least one oral presentation per term. A final course essay is required.
Terms: Fall 2010
Instructors: Shrier, Alvin; Cohen, Monroe W; Brown, Claire (Fall)
Physiology : See PHGY 459D1 for course description.
Terms: Winter 2011
Instructors: Shrier, Alvin; Cohen, Monroe W; Chen, Brian (Winter)
Physiology : Individual project work under the supervision of Departmental Staff members.
Terms: Fall 2010
Instructors: Wechsler, Ann; Cooper, Linda H (Fall)
Physiology : See PHGY 461D1 for course description.
Terms: Winter 2011
Instructors: Wechsler, Ann; Cooper, Linda H (Winter)
9 credits selected as follows:
3 credits, one of:
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2011
Instructors: Duchaine, Thomas; Pause, Arnim; Reinhardt, Dieter (Winter)
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2011
Instructors: Levine, Robert; Hewitt, Kathryn; Brouhard, Gary (Winter)
3 credits, one of:
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2010
Instructors: Glass, Leon (Fall)
Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.
Terms: Fall 2010
Instructors: Seizilles de Mazancourt, Claire; Potvin, Catherine (Fall)
3 credits, one of:
Chemistry : The fundamentals of thermodynamics and chemical kinetics with applications to biomolecular systems. Thermodynamic and kinetic control of biological processes.
Terms: Fall 2010
Instructors: Galley, William Claude (Fall)
Chemistry : Similar to CHEM 223/CHEM 243. Emphasis on the use of biological examples to illustrate the principles of physical chemistry. The relevance of physical chemistry to biology is stressed.
Terms: Fall 2010, Winter 2011
Instructors: Blum, Amy (Fall) Cosa, Gonzalo (Winter)
6 credits selected from the upper-level Physiology (ULP) course list as follows:
All Physiology courses 400-level and above.
Anatomy & Cell Biology : Complex aging process, including theories and mechanisms of aging, animal model systems used to study aging, age-dependent diseases, for example, Alzheimer's, osteoporosis, and cancer, and age-related diseases, for example, Werner's syndrome and dyskeratosis congenita.
Terms: Winter 2011
Instructors: Lehoux, Stephanie; Autexier, Chantal (Winter)
Biology (Sci) : Discussions of all aspects of nervous system development including pattern formation, cell lineage, pathfinding and targeting by growing axons, and neuronal regeneration. The basis for these discussions will be recent research papers and other assigned readings.
Terms: Winter 2011
Instructors: Levine, Robert; Van Meyel, Donald (Winter)
Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.
Terms: Fall 2010
Instructors: Kearney, Robert E (Fall)
Experimental Medicine : This course is designed for U3 students who are in a major or honours program in anatomy, biology, biochemistry or physiology and for graduate students. A multidisciplinary approach will be used to teach biosynthesis and processing of hormones, their regulation, function and mechanism of action. The material will cover hypothalamic, pituitary, thyroid, atrial and adrenal hormones as well as prostaglandins and related substances.
Terms: Fall 2010
Instructors: Bennett, Hugh P J; Bateman, Andrew (Fall)
Experimental Medicine : Study of the parathyroids, gut and pancreatic hormones and growth factors. In addition, the role of hormones and growth factors in reproduction and fetal maturation will be discussed.
Terms: Winter 2011
Instructors: Bennett, Hugh P J (Winter)
Experimental Medicine : Offered in conjunction with the Department of Physiology. Current topics, methods and techniques for studying the cardiovascular system. Basic and applied cardiac electrophysiology, mechanisms of pacemaker activity, arrhythmias, the effects of drugs on cardiac functions, fetal circulation, coronary circulation, mechanics of blood flow, cardiovascular diseases, renal and neural control of the circulation, and cardiac assist devices.
Terms: Fall 2010
Instructors: Giaid, Adel (Fall)
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of respiratory biology including: functional anatomy of the respiratory system, pulmonary statics and dynamics, chest wall and respiratory muscles, ventilation and perfusion, control of breathing, and defense mechanisms. This course is aimed at providing a solid grounding in pulmonary biology and its research applications.
Terms: Fall 2010
Instructors: Petrof, Basil (Fall)
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of developmental physiology, pulmonary vascular physiology, biology of airway smooth muscle, respiratory epithelium and molecular biology of respiratory muscles. Dyspnea, mechanical ventilation and respiratory failure will also be covered. This course emphasizes application of respiratory biology to basic and applied research and touches on pulmonary pathophysiology.
Terms: Winter 2011
Instructors: Fixman, Elizabeth Dee (Winter)
Microbiology and Immun (Sci) : A study of the biology, immunological aspects of host-parasite interactions, pathogenicity, epidemiology and molecular biological aspects of selected parasites of medical importance. Laboratory will consist of a lecture on techniques, demonstrations and practical work.
Terms: Winter 2011
Instructors: Ali Khan, Zafer; Olivier, Martin; Dalton, John (Winter)
Microbiology and Immun (Sci) : An advanced course serving as a logical extension of MIMM 314. The course will integrate molecular, cellular and biochemical events involved in the ontogeny of the lymphoid system and its activation in the immune response. The course will provide the student with an up-to-date understanding of a rapidly moving field.
Terms: Fall 2010
Instructors: Fournier, Sylvie; Olivier, Martin; Fritz, Jörg (Fall)
Microbiology and Immun (Sci) : Organized by the º«¹úÂãÎè Centre for the Study of Host Resistance. This course focuses on the interplay of the host and the pathogen. The cellular and molecular basis of the host defense mechanism against infections will be considered in relationship to the virulence factors and evasion strategies used by bacteria to cause disease.
Terms: Fall 2010
Instructors: Le-Moual, Herve; Olivier, Martin; Dzierszinski, Florence (Fall)
Microbiology and Immun (Sci) : A study of the biological and molecular aspects of viral pathogenesis with emphasis on the human pathogenic viruses including the retroviruses HIV and HTLV-1; herpes viruses; papilloma viruses; hepatitis viruses; and new emerging human viral diseases. These viruses will be discussed in terms of virus multiplication, gene expression virus-induced cytopathic effects and host immune response to infection.
Terms: Winter 2011
Instructors: Gatignol, Anne; Liang, Chen; Chalifour, Lorraine E (Winter)
Psychology : Memory systems are studied with an emphasis on the neural computations that occur at various stages of the processing stream, focusing on the hippocampus, amygdala, basal ganglia, cerebellum and cortex. The data reviewed is obtained from human, non-human primates and rodents, with single unit recording, neuroimaging and brain damaged subjects.
Terms: Winter 2011
Instructors: Rajah, Maria (Winter)
Psychiatry : Current theories on the neurobiological basis of most well known mental disorders (e.g. schizophrenia, depression, anxiety, dementia). Methods and strategies in research on genetic, physiological and biochemical factors in mental illness will be discussed. Discussion will also focus on the rationale for present treatment approaches and on promising new approaches.
Terms: Winter 2011
Instructors: Srivastava, Lalit K; Wong, Tak Pan (Winter)